Digital Modulation Classification by Support Vector Machines and Hilbert–Huang Transformation
نویسندگان
چکیده
-Support Vector Machines (SVMs) map inputs vectors nonlinearly into a high dimensional feature space and construct the optimum separating hyperplane in space to realize signal classification. Automatic classification of digital modulation signals plays an important role in communication applications such as an intelligent demodulator, interference identification and monitoring, so many investigations have been carried out in the past. Hilbert-Huang transformation (HHT) is a novel method of time frequency analysis for nonlinear and non-stationary data. In this paper, a new method based on SVM and HHT for classifying BFSK, BPSK and 16QAM is proposed. The method can classify these signals well, and the correct classification rates are above 88%. Key-Words:Support Vector Machines (SVMs), modulation identification, modulation classification, intelligent demodulator, Hilbert-Huang transformation (HHT), time frequency analysis
منابع مشابه
Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملدسته بندی و شناسائی اهداف زیرآبی بر اساس اصوات منتشره
This paper investigates an underwater noise target classification algorithm in order to identify vessels in shallow water. To this aim the Hilbert Huang transform has been used to extract features in order to be used in a classifier. The Support Vector Machine has been considered to identify targets. The proposed method based on Hilbert Huang Transform shows considerable gain against similar ap...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کامل